The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation.

نویسندگان

  • M A van den Berg
  • P de Jong-Gubbels
  • C J Kortland
  • J P van Dijken
  • J T Pronk
  • H Y Steensma
چکیده

Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saccharomyces Cerevisiae as a Biocatalyst for Different Carbonyl Group under Green Condition

In this researchsaccharomyces cerevisiae (baker’s yeast) was used as a cheap, readily accessible, selective, efficient, and green bio-catalyst in a chemo selective reduction of carbonyl group to hydroxyl group. In this green procedure three substrates e.g. (3-(3-nitrophenyl)aziridin-2-yl)-1-phenyl-methanone, pyruvate ester, and 2-acetyl-γ-butyrolactone were r...

متن کامل

Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae.

SIR2 proteins have NAD(+)-dependent histone deacetylase activity, but no metabolic role has been assigned to any of these proteins. In Salmonella enterica, SIR2 function was required for activity of the acetyl-CoA synthetase (Acs) enzyme. A greater than two orders of magnitude increase in the specific activity of Acs enzyme synthesized by a sirtuin-deficient strain was measured after treatment ...

متن کامل

Efficiency of Saccharomyces Cerevisiae in Ceftriaxone Removal from Aquatic Environments: Kinetic, Isotherm of Absorption and Thermodynamics Study

Background & objectives: Antibiotics are potentially harmful contaminants, which can cause harmful effects on environmental equilibrium of ecosystems and the food chain. The aim of this study was to investigate the removal of ceftriaxone antibiotic by Saccharomyces Cerevisiae biosorbent from aquatic environments. Methods: This experimental study was conducted in a lab-scale batch reactor as dis...

متن کامل

Characterization of Encapsulated Berberine in Yeast Cells of Saccharomyces cerevisiae

Berberine was loaded in yeast cells of Saccharomyces cerevisiaeas a novel pharmaceutical carrier to improve the treatment ofmany diseases. The yeast-encapsulated active materialsshowedhigh stability and bioavailability due to the enhanced solubility and sustained releasing. In this study, different characteristics of prepared berberine loaded yeast cells (loading capacity, release kinetic order...

متن کامل

The Mechanism of Chromium Biosorption by Saccharomyces Cerevisiae

The Biosorption property of S. cerevisiae for chromium uptake was investigated in an immobilized cell bioreactor. Saw dust was utilized as the solid bed in the reactor. Adsorption of S. cerevisiae on saw dust obeys a first order reaction kinetic up to 6 hours. The immobilized biomass particles are porous and exist in the new generation of biological adsorbent. Chromium biosorption was studied i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 46  شماره 

صفحات  -

تاریخ انتشار 1996